
sewageandrain

Loading the libraries needed for the analysis.

library(tidycensus)
library(tidyverse)
library(dplyr)
library(units)
library(sf)
census_api_key("125fdf4db95fe2b4e4e00e1253ab9e87d2864a58", overwrite = TRUE, install = TRUE)

[1] "125fdf4db95fe2b4e4e00e1253ab9e87d2864a58"

library(tigris)
options(tigris_class = "sf")
options(tigris_use_cache = TRUE)
library(ggplot2)
library(mapbaltimore)
library(tidyr)
library(purrr)
library(xts)
library(lubridate)
library(mapview)
library(plotly)
library(tmap)
library(gifski) #used to make gifs
library(raster) #used for the area
library(RColorBrewer) #used for color palettes
library(areal)
library(biscale)
library(cowplot)
library(magick)
library(spdep)
library(RColorBrewer)

Calling in population and income for Baltimore City based on cen-
sus tracts.

#pulling in the income and population information per census tract in 2019
bmore_data <- get_acs(

geography = "tract",
variables = c("income" = "B19013_001",

1

"population" = "B01001_001"),
state = "MD", #FIPS code 24
county = "Baltimore City", #FIPS code 510
year = 2019,

geometry = TRUE,
output = "wide"

) %>%
st_transform(3857) #Changing to Web Mercator

Download the water for Baltimore city and county
bmore_water <- area_water("MD", c(510,005), class = "sf") %>% filter(AWATER > 20000) #calls water for baltimore city and county
bmore_water <- st_transform(bmore_water, 3857) #Transform to Web Mercator

bmore_water <- st_make_valid(st_buffer(bmore_water, 0)) #Fix topology

st_erase <- function(x, y) {
st_difference(x, st_make_valid(st_union(st_combine(y)))) # clipping x intersection (y)ˆ(complement)

}

#Erase water from joined variable
bmore_minuswater <- st_erase(bmore_data,bmore_water)
plot(st_geometry(bmore_minuswater))

This is reading in the csv file that have the sewage overflow infor-
mation, and adjusting it in a way that is most useful to what I am
trying to do here.

#pulling in the sewage overflow data downloaded from Maryland Dept of the Environment filtering out by municipality
overflows_total <- read.csv(file = "/Users/Tyrah/adv GIS classwork/finalproject_687/overflows_from_MDE.csv") %>% filter(Year == 2019) #filtering by year to match the rain data I have
overflows19 <- subset(overflows_total, select = c(Date_discovered,Time_discovered, Latitude, Longitude)) #choosing the columns I want to keep

overflows_points = st_as_sf(overflows19, coords = c("Longitude", "Latitude"), crs = 4326) %>% st_transform(overflows_points, crs = 3857) #going from lat long CRS to Web Mercator

plot(st_geometry(overflows_points), pch=16, col="navy") #pch denotes the shape of a circle, this is making tsure the points show up!

This is reading in the rain data files, one with the lat/long info per
pixel and the other with the data at 15 min intervals everyday from
April to September.

Uploading rainfall data and the corresponding lat/long locations from another data file
#this is pulling in the rainfall data for 2019, information collected every 15min
rainfall_data <- read_csv("/Users/Tyrah/adv GIS classwork/finalproject_687/BaltCity2019_Tyrah_finalproject.csv")

#this is the location of the pixels collecting the rainfall data
pixels_latlong <- read_csv("/Users/Tyrah/adv GIS classwork/finalproject_687/Balt_latlong.csv")

2

this is getting the geometries of the pixels
pixel_location <- st_as_sf(pixels_latlong, coords = c("longitude", "latitude"), crs = 4326)
plot(pixel_location$geometry)

#trying to pivot the information to make the data in a long format rather than wide...
rainfall_data_transposed <- rainfall_data %>% pivot_longer(cols = 3:244, names_to = "gridnum", values_to = "rainmm")

#had to change this column to be of character type (original a double), so that it could join with the gridnum column in another dataframe
pixels_latlong$PixelNumber <- as.character(pixels_latlong$PixelNumber)

rainwithlatlong <- left_join(rainfall_data_transposed, pixels_latlong, by = c("gridnum" = "PixelNumber")) #joining the transposed rainfall data to lat long to give it geometry

rainwithlatlong$gridnum <- as.vector(rainwithlatlong$gridnum)

#if i dont use the removed zeros in the group by can also use rainwithlatlong
removed_zeros <- filter(rainwithlatlong, rainmm > 0)
dayandpixel <- removed_zeros %>% group_by(Date, gridnum, latitude, longitude)
sumbyday_rain <- dayandpixel %>% summarise(
sum = sum(rainmm)
)

#this is grouping by grid number and summarizing the rain information by total amount and average amounts of rain per grid (represnted by circles).
by_gridnum <- rainwithlatlong %>% group_by(gridnum, latitude, longitude)
sum_rain <- by_gridnum %>% summarise(

rain = sum(rainmm),
mean = mean(rainmm)

)

‘summarise()‘ has grouped output by ’gridnum’, ’latitude’. You can override
using the ‘.groups‘ argument.

rain_sf <- st_as_sf(sum_rain, coords = c("longitude", "latitude"), crs = 4326)
rain_proj <- rain_sf %>% st_transform(3857)

totalrain_plot <- tm_shape(rain_sf) +
tm_dots(group ="rain", col = "rain", size = 1, palette = "-Spectral") +
tm_layout(outer.margins = rep(0.06, 6),inner.margins = rep(0.08, 8), main.title = "Total Amount of Rainfall(mm) per Pixel (2019)", main.title.size = .89)

totalrain_plot

3

Total Amount of Rainfall(mm) per Pixel (2019)

rain
250 to 300
300 to 350
350 to 400
400 to 450
450 to 500
500 to 550
550 to 600

This is showing the number of sewage over flow points in each tract
based on the lat/long of the sewage overflow occurrence.

#this is joining datasets to show the points found within each tract
overflows_tracts_join <- st_join(overflows_points, bmore_minuswater)

#this is counting the number of reports per tract
reports_intracts_count <- count(as_tibble(overflows_tracts_join), GEOID)

info2019 <- left_join(bmore_minuswater, reports_intracts_count, by=c("GEOID")) #this joins the info so we have the total number in each neighborhood for 2019

reportsbytract <- ggplot(data = info2019, aes(fill = n)) +
geom_sf() +
scale_fill_distiller(palette = "Reds",

direction = 1,
limits = c(0,30)) +

labs(title = "2019 Total Sewage Overflow Reports",
caption = "Overflow information provided by MDE",
fill = "total reports") +

theme_void()

plot(reportsbytract)

4

0

10

20

30
total reports

2019 Total Sewage Overflow Reports

Overflow information provided by MDE

info2019$area <- st_area(info2019$geometry) #calculating area via geometry, outputin units mˆ2
info2019$area <- drop_units(info2019$area) #this is dropping the units so that the dataframe is easier to work with in certain packages

info2019$sqmi <- (info2019$area * 0.00000038610) #converting to milesˆ2

info2019$reportspersqmi <- (info2019$n / info2019$sqmi) #this is calculating density
info2019$reportspersqmi <- drop_units(info2019$reportspersqmi) #again, dropping the units

reports_sqmi<- ggplot(data = info2019, aes(fill = reportspersqmi)) +
geom_sf() +
scale_fill_distiller(palette = "Reds",

direction = 1,
limits = c(0,30),
breaks=c(0,5,10, 15, 20, 25,30)) +

labs(title = "Sewage Overflow Report Density (per Sq Mi)",
caption = "Overflow information provided by MDE",
fill = "total reports") +

theme_void()

plot(reports_sqmi)

5

0

5

10

15

20

25

30
total reports

Sewage Overflow Report Density (per Sq Mi)

Overflow information provided by MDE

ggsave(filename = "reports_persqmi.png", plot=reports_sqmi,width=4,height=4,units="in",scale=1)

#This is breaking Baltimore City up as a series of hexagons for future comparisons.

Make and subset grid
Make a grid
bmore_grid_2 <- st_make_grid(bmore_minuswater,

2 * 1000, # Kms
crs = 3857,
what = "polygons", #you can also create lines
square = FALSE # hexagons , knows it is a hexagon if squares is set to false

)

To sf
bmore_grid_2 <- st_sf(index = 1:length(lengths(bmore_grid_2)), bmore_grid_2) # Add index , #making a sf object out of the st grid from above

#plot(st_geometry(bmore_grid), border="#aaaaaa", lwd = .1)
#plot(st_geometry(bmore_bg_income), add=T, lwd = .1)

bmore_shape_2 <- st_union(bmore_minuswater) #stunion dissolves it and makes it one polygon shape that is baltimore city and county with the water erased

bmore_grid2.intersects <- st_intersects(bmore_shape_2, bmore_grid_2)
bmore_grid2.subset <- bmore_grid_2[bmore_grid2.intersects[[1]],]

plot(st_geometry(bmore_grid2.subset), col="blue")

6

#This is doing the areal interpolation of the data.

ar_validate(source = info2019, target = bmore_grid2.subset, varList = "populationE", method = "aw")

[1] TRUE

bmore_interpolate <- aw_interpolate(bmore_grid2.subset, tid = index, source = info2019, sid = "GEOID", weight = "sum", output = "sf", extensive = c("populationE","incomeE", "n"))

plot(st_geometry(bmore_interpolate))

ggplot() +
geom_sf(

data = bmore_grid_2,
fill = "white", colour = "gray80"

) +
geom_sf(

data = bmore_interpolate,
mapping = aes(fill = populationE), show.legend = FALSE

) +
coord_sf()

39.20°N

39.25°N

39.30°N

39.35°N

76.70°W 76.65°W 76.60°W 76.55°W

7

This is grouping the hexagons by index and counting how many
times an index occurs because that tells us the number of reports
per hex.

reports_hex_join <- st_join(bmore_interpolate, overflows_points) #this joins the Baltimore hex grid to a dataframe that has the number of reports (n)
reportsbyindex <- reports_hex_join %>% group_by(index) %>% count(index) #this is grouping the data by index value and then summarizing each index by totaling the amount of reports

reportsbyhex_map <- ggplot() +
geom_sf(

data = reports_hex_join,
fill = "white", colour = "gray80"

) +
geom_sf(

data = reportsbyindex,
mapping = aes(fill = n), show.legend = TRUE

) +
coord_sf() +

labs(title="Total Submitted Reports Per Hex")

reportsbyhex_map

39.20°N

39.25°N

39.30°N

39.35°N

76.70°W 76.65°W 76.60°W 76.55°W

10

20

30
n

Total Submitted Reports Per Hex

8

This is joining the hexagon data for overflow reports and relating
it to the geometry of Baltimore tracts. This offers a better under-
standing of how the reports are distributed when compared to the
initial map that only based on lat/long of the reports.

hexreports_tracts_join <- st_join(bmore_minuswater, reportsbyindex)

plot(hexreports_tracts_join$geometry)

hexreports_tracts_join_map <- ggplot(data = hexreports_tracts_join, aes(fill = n)) +
geom_sf() +
scale_fill_distiller(palette = "YlOrRd",

direction = 1,
limits = c(0,30)) +

labs(title = "2019 Total Sewage Overflow Reports",
caption = "Overflow information provided by MDE",
fill = "total reports") +

theme_void()

plot(hexreports_tracts_join_map)

0

10

20

30
total reports

2019 Total Sewage Overflow Reports

Overflow information provided by MDE

This is breaking down the city by a hexagon grid and then relating the rainfall data per hexagon cell.

9

rain_hex_join <- st_join(bmore_interpolate, rain_proj) #this joins the Baltimore hex grid to the rainfall data
rainbyindex <- rain_hex_join %>% group_by(index) %>% summarize(rain_avg = mean(rain)) #this is grouping the data by index value and then summarizing each index by taking the average of the rain values

rainbyhex_map <- ggplot() +
geom_sf(

data = rain_hex_join,
fill = "white", colour = "gray80"

) +
geom_sf(

data = rainbyindex,
mapping = aes(fill = rain_avg), show.legend = TRUE

) +
coord_sf() +

labs(title="Amount of Rain Per Hex")

rainbyhex_map

39.20°N

39.25°N

39.30°N

39.35°N

76.70°W 76.65°W 76.60°W 76.55°W

300

400

500

rain_avg

Amount of Rain Per Hex

10

This is joining the rain information from hexagons to Baltimore
Geometry to get an understanding of how rain is distrubuted on
average across each tract in a 6 month time span in 2019 (April to
September)

hexrain_tracts_join <- st_join(bmore_minuswater, rainbyindex)

#plot(hexrain_tracts_join$geometry)

hexreports_tracts_join_map <- ggplot(data = hexrain_tracts_join, aes(fill = rain_avg)) +
geom_sf() +
scale_fill_distiller(palette = "YlOrRd",

direction = 1) +
labs(title = "Average Rainfall in 2019 by Census Tract",

caption = "2019 Baltimore City Rainfall Data",
fill = "total reports") +

theme_void()

plot(hexreports_tracts_join_map)

300

400

500

total reports

Average Rainfall in 2019 by Census Tract

2019 Baltimore City Rainfall Data

11

Trying to relate hexagons to census tracts via a spatial join.

#did this join so that total number of reports could be joined together in the same dataframe as Baltimore geometry and census info
reportsanderain_hex<- st_join(rainbyindex,hexreports_tracts_join)

reportsandrain_baltimore <- st_join(bmore_minuswater,reportsanderain_hex, by=c("GEOID"))

totalreportsandrainjoin <- st_join(reportsandrain_baltimore,rainbyindex, by=c("index"))

rain_reports <- bi_class(reportsandrain_baltimore, x = n, y = rain_avg, style = "quantile", dim = 2)

Warning in classInt::classIntervals(bins_y, n = dim, style = "quantile"): var
has missing values, omitted in finding classes

create map
rain_reports_map <- ggplot() +

geom_sf(data = rain_reports, mapping = aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "DkViolet", dim = 3) +
labs(title = "Sewage Reports and Rain") +
bi_theme()

rain_reports_map

rain_reports_legend <- bi_legend(pal = "DkViolet",
dim = 3,
xlab = "Rain (mm)",
ylab = " # of Reports",
size = 8)

rain_reports_final <- ggdraw() +
draw_plot(rain_reports_map, 0, 0, 1, 1) +
draw_plot(rain_reports_legend, 0.68, .4, 0.2, 0.2)

rain_reports_final

12

Sewage Reports and Rain

Rain (mm) → #
 o

f R
ep

or
ts

→
This is finding the number (n) of submitted sewage overflow reports from 2019 per hex

Comparing Income and the number of reports per Census Tract

income_reports <- bi_class(totalreportsandrainjoin, x = n, y = incomeE.x, style = "quantile", dim = 2)

Warning in classInt::classIntervals(bins_y, n = dim, style = "quantile"): var
has missing values, omitted in finding classes

create map
income_reports_map <- ggplot() +

geom_sf(data = income_reports, mapping = aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "DkViolet", dim = 3) +
labs(title = "Sewage Reports and Income") +
bi_theme()

income_reports_map

income_reports_legend <- bi_legend(pal = "DkViolet",
dim = 3,
xlab = "Income ",
ylab = " # of Reports ",
size = 8)

income_reports_final <- ggdraw() +
draw_plot(income_reports_map, 0, 0, 1, 1) +

13

draw_plot(income_reports_legend, 0.68, .4, 0.2, 0.2)

income_reports_final

Sewage Reports and Income

Income → #
 o

f R
ep

or
ts

 →

pop_reports <- bi_class(totalreportsandrainjoin, x = n, y = populationE.x, style = "quantile", dim = 2)

create map
pop_reports_map <- ggplot() +

geom_sf(data = pop_reports, mapping = aes(fill = bi_class), color = "white", size = 0.1, show.legend = FALSE) +
bi_scale_fill(pal = "DkViolet", dim = 3) +
labs(

title = " Sewage Reports and Population") +
bi_theme()

pop_reports_map

pop_reports_legend <- bi_legend(pal = "DkViolet",
dim = 3,
xlab = "Population ",
ylab = " # of Reports ",
size = 8)

pop_reports_final <- ggdraw() +
draw_plot(pop_reports_map, 0, 0, 1, 1) +
draw_plot(pop_reports_legend, 0.68, .4, 0.2, 0.2)

pop_reports_final

14

 Sewage Reports and Population

Population → #
 o

f R
ep

or
ts

 →

15

	Loading the libraries needed for the analysis.
	Calling in population and income for Baltimore City based on census tracts.
	This is reading in the csv file that have the sewage overflow information, and adjusting it in a way that is most useful to what I am trying to do here.
	This is reading in the rain data files, one with the lat/long info per pixel and the other with the data at 15 min intervals everyday from April to September.
	This is showing the number of sewage over flow points in each tract based on the lat/long of the sewage overflow occurrence.
	This is grouping the hexagons by index and counting how many times an index occurs because that tells us the number of reports per hex.
	This is joining the hexagon data for overflow reports and relating it to the geometry of Baltimore tracts. This offers a better understanding of how the reports are distributed when compared to the initial map that only based on lat/long of the reports.
	This is joining the rain information from hexagons to Baltimore Geometry to get an understanding of how rain is distrubuted on average across each tract in a 6 month time span in 2019 (April to September)
	Trying to relate hexagons to census tracts via a spatial join.
	Comparing Income and the number of reports per Census Tract

